S.B.I.O.A. SENIOR SECONDARY SCHOOL, TRICHY - 07

CLASS: VIII
MATHEMATICS
DATE: 19.05.2020
NAME:
REVIEW WORKSHEET - 1

Fill in the blanks:

1. The number of digits in Indian Number System and International Number System is \qquad
2. $0,1,2,3,4,5,6,7,8$ and 9 are the \qquad
3. The counting numbers $1,2,3,4, \ldots$ are called \qquad numbers.
4. The set of all Natural numbers is denoted by the letter \qquad
5. The Natural numbers together with zero are called \qquad numbers.
6. The set of all Whole numbers is denoted by the letter \qquad
7. The Whole numbers and negative numbers together are called \qquad
8. The set of all Integers is denoted by the letter \qquad or
9. \qquad is the smallest Natural number.
10. \qquad is the smallest Whole number.
11. Is it possible to find the largest Natural number? \qquad
12. Is it possible to find the largest Whole number? \qquad
13. Except \qquad every Natural number has a predecessor.
14. Except \qquad every Whole number has a predecessor.
15. All Natural numbers are \qquad numbers.
16. All Whole numbers are \qquad Natural numbers.
17. Z^{+}denotes the set of all $\ldots \ldots \ldots \ldots$. Integers.
18. Z^{-}denotes the set of all \qquad Integers.
19. All positive integers are \qquad than zero
20. All negative integers are \qquad than zero.

S.B.I.O.A. SENIOR SECONDARY SCHOOL, TRICHY - 07

CLASS: VIII
MATHEMATICS

NAME:
RATIONAL NUMBERS WORKSHEET - 2

Fill in the blanks:

1. A number of the form $\frac{\mathrm{p}}{\mathrm{q}}$, where p and q are integers and $\mathrm{q} \neq 0$ is called a number.
2. The set of all rational numbers is denoted by the letter \qquad
3. $\mathrm{Q}=$ The set of all rational numbers

$$
=\left\{\frac{p}{q} / p, q \in \ldots \ldots \ldots . \& q\right.
$$

4. is a special rational number.
5. Zero can be written as $0=\frac{0}{\mathrm{q}}$ where $\mathrm{q} \neq$ \qquad
6. The sum of any two rational numbers is always a \qquad number.

Therefore the rational numbers are closed under \qquad
07. For any two rational numbers $\frac{\mathrm{p}}{\mathrm{q}}$ and $\frac{r}{\mathrm{~s}}, \frac{\mathrm{p}}{\mathrm{q}}+\frac{\mathrm{r}}{\mathrm{s}}$ is also a number.
08. Is $\frac{13}{0}$ a rational number? Reason: \qquad
09. Is $\frac{0}{0}$ a rational number? Reason: \qquad
10. Are $70,30,276$ rational numbers?

Reason:

Answer the following:

Prove that the rational numbers are closed under addition. ($\underline{\text { Hint }}$: Consider any two rational numbers)

S.B.I.O.A. SENIOR SECONDARY SCHOOL, TRICHY - 07

CLASS: VIII
MATHEMATICS
DATE: 04.06.2020

NAME:
RATIONAL NUMBERS WORKSHEET - 3

Fill in the blanks:

1. The difference between any two rational numbers is always a \qquad number. Therefore the rational numbers are closed under \qquad
2. For any two rational numbers $\frac{\mathrm{p}}{\mathrm{q}}$ and $\frac{r}{\mathrm{~s}}, \frac{\mathrm{p}}{\mathrm{q}}-\frac{\mathrm{r}}{\mathrm{s}}$ is also a \qquad number.
3. The product of any two rational numbers is always a \qquad number. Therefore the rational numbers are closed under \qquad
4. For any two rational numbers $\frac{\mathrm{p}}{\mathrm{q}}$ and $\frac{r}{\mathrm{~s}}, \frac{\mathrm{p}}{\mathrm{q}} \times \frac{\mathrm{r}}{\mathrm{s}}$ is also a \qquad number.
5. The division of any \qquad rational numbers is always a rational number. Therefore the collection of non-zero rational numbers are closed under \qquad
6. If $\frac{\mathrm{p}}{\mathrm{q}}$ and $\frac{r}{\mathrm{~s}}$ are two rational numbers, such that $\frac{r}{\mathrm{~s}}$ \qquad 0 , then $\frac{\mathrm{p}}{\mathrm{q}} \div \frac{\mathrm{r}}{\mathrm{s}}$ is also a rational number.
7. Add: $\left(\frac{3}{8}\right)+\left(\frac{-5}{8}\right)$
8. Add: $\left(\frac{-2}{11}\right)+\left(\frac{3}{11}\right)+\left(\frac{-4}{11}\right)$
9. Add $\frac{-4}{9}$ and $\frac{5}{18}$
10. Add $\frac{-3}{8}, \frac{-1}{2}$ and $\frac{5}{6}$
11. Subtract: $\left(\frac{6}{35}\right)-\left(\frac{-8}{25}\right)$
12. Subtract: $\left(\frac{-3}{4}\right)-\left(\frac{6}{7}\right)$
13. Subtract $\frac{-14}{39}$ from $\frac{-6}{13}$
14. Subtract $\left(\frac{-7}{26}\right)$ from $\frac{11}{39}$
15. Multiply $\frac{-3}{7}$ and $\frac{7}{8}$
16. Multiply $\frac{-6}{11}$ and $\frac{55}{12}$
17. Multiply $\frac{9}{5}, \frac{-10}{3}$ and $\frac{15}{18}$
18. Find the product of $\frac{-5}{6}$ and $\frac{4}{-15}$
19. Find the product of $\frac{-50}{7}$ and $\frac{21}{10}$
20. Find the product of $\frac{-8}{25}, \frac{-5}{16}$ and $\frac{-30}{12}$
21. Divide: $\frac{-8}{35} \div \frac{-6}{30}$
22. Divide: $\frac{-3}{4} \div \frac{13}{40}$
23. Divide $\frac{-4}{9}$ by $\frac{-16}{3}$
24. Divide $\frac{3}{90}$ by $\frac{13}{40}$
25. Divide $\frac{2}{3}$ by $\frac{-15}{20}$

Answer the following: (Hint: Consider any two rational numbers)

1. Prove that the rational numbers are closed under subtraction.
2. Prove that the rational numbers are closed under multiplication.
3. Prove that the non-zero rational numbers are closed under division.

CLASS: VIII
NAME:
RATIONAL NUMBERS WORKSHEET - 4
DATE: 11.06.2020

Fill in the blanks:

1. The two rational numbers can be added in any \qquad
2. Addition is commutative for \qquad numbers.
3. For any two rational numbers $\frac{\mathrm{p}}{\mathrm{q}}$ and $\frac{\mathrm{r}}{\mathrm{s}}, \frac{\mathrm{p}}{\mathrm{q}}+\frac{\mathrm{r}}{\mathrm{s}}=$ \qquad $+\frac{p}{q}$
4. Subtraction is \qquad commutative for rational numbers.
5. Multiplication is commutative for \qquad numbers.
6. For any two rational numbers $\frac{p}{q}$ and $\frac{r}{s}, \frac{p}{q} \times \frac{r}{s}=$ \qquad $\times \frac{p}{q}$
7. $\frac{-7}{5}+\frac{6}{7}=\frac{6}{7}+$ \qquad
8. $\frac{9}{10}+$ \qquad $=\frac{5}{11}+$
9. $0+\frac{12}{11}=$ \qquad $+0$
10. $\left(\frac{-\mathrm{u}}{\mathrm{v}}\right)+\frac{\mathrm{w}}{\mathrm{x}}=\frac{\mathrm{w}}{\mathrm{x}}+$ \qquad
11. $\frac{l}{\mathrm{~m}}+\left(\frac{-\mathrm{p}}{\mathrm{q}}\right)=\left(\frac{-\mathrm{p}}{\mathrm{q}}\right)+$ \qquad
12. $\frac{\mathrm{a}}{\mathrm{b}}+0=0+$ \qquad
13. $\left(\frac{-14}{3}\right)+\left(\frac{2}{3}\right) \ldots \ldots \ldots .\left(\frac{2}{3}\right)+\left(\frac{-14}{3}\right)$
14. $\left(\frac{-14}{3}\right)-\left(\frac{2}{3}\right) \ldots \ldots \ldots .\left(\frac{2}{3}\right)-\left(\frac{-14}{3}\right)$
15. $\frac{99}{2}-\left(\frac{-6}{7}\right) \ldots \ldots \ldots \ldots\left(\frac{-6}{7}\right)-\frac{99}{2}$
16. $\left(\frac{-102}{17}\right) \ldots \ldots\left(\frac{12}{17}\right) \ldots \ldots \ldots . .\left(\frac{12}{17}\right)-\left(\frac{-102}{17}\right)$
17. $\left(\frac{44}{21}\right)-\left(\frac{11}{9}\right) \neq\left(\frac{11}{9}\right) \ldots \ldots . .\left(\frac{44}{21}\right)$
18. $\left(\frac{111}{30}\right)-\left(\frac{84}{6}\right)$........... $\left(\frac{84}{6}\right)-\left(\frac{111}{30}\right)$
19. $\left(\frac{-a}{b}\right)-\left(\frac{-\mathrm{c}}{\mathrm{d}}\right) \neq \ldots \ldots . .-\left(\frac{-\mathrm{a}}{\mathrm{b}}\right)$
20. $0 \times \frac{1}{7}=\ldots \ldots \times 0$
21. $\frac{5}{9} \times \frac{18}{25}=\frac{18}{25} \times$
22. $\frac{-27}{81} \times \frac{33}{11}=\ldots \ldots \ldots .=\frac{33}{11} \times \frac{-27}{81}$
23. $\frac{0}{14} \times \frac{-14}{28}=\ldots \ldots \ldots .=\frac{-14}{28} \times$
24. $\frac{2}{8} \times \frac{5}{10}=$ \qquad $=\frac{5}{10} \times \frac{2}{8}$
25. $\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{c}}{\mathrm{d}}=$ \qquad $=\frac{\mathrm{c}}{\mathrm{d}} \times \frac{\mathrm{a}}{\mathrm{b}}$

Answer the following: (Hint: Consider any two rational numbers)

1. Prove that the addition is commutative for rational numbers.
2. Prove that the subtraction is not commutative for rational numbers.
3. Prove that the multiplication is commutative for rational numbers.
